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Context

- Games can be solved through empirical game models by proxy.
- Models are built by alternating game-reasoning and strategy exploration.

Strategy Exploration
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- compute best-responses to current solution.

- Complex games make computing best-responses intractable.
- Reinforcement learning can be used to compute approximate responses.
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This Work

- reinforcement learned policies require lots of data to train.

- Data can be expensive to collect (e.g., human interactions / simulation).
- Experiential Cost: amount of data used to train policies.

- Game modelling computes a series of policies, each with high cost.
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- strategy exploration methods that utilize transfer learning.

Q-Mixing

- average Q-values following belief over opponents.
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Opponent Strategy Sorted by Response Performance

Regret

Regret

Reduce data costs of
game learning by

functions from previously
learned policies.

Mixed-Oracles

- each player adds one new policy.
- learn best-response to new policy, and transfer the rest.
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Mixed-Opponents

- aggregate opponent policies using Q-Mixing.
- Discovery strategically important policies faster, train less policies overall.
- Consider each policy’s value for all actions, giving rise to unique policy.
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Effects of Averaging Q-values
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Likelihood Prior
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